Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38139770

RESUMO

Ceragenins (CSAs) are a new class of antimicrobial agents designed to mimic the activities of endogenous antimicrobial peptides. In this study, the antibacterial activities of various ceragenins (CSA-13, CSA-44, CSA-90, CSA-131, CSA-138, CSA-142, and CSA-192), linezolid, and daptomycin were assessed against 50 non-repeated Enterococcus spp. (17 of them vancomycin-resistant Enterococcus-VRE) isolated from various clinical specimens. Among the ceragenins evaluated, the MIC50 and MIC90 values of CSA-44 and CSA-192 were the lowest (2 and 4 µg/mL, respectively), and further studies were continued with these two ceragenins. Potential interactions between CSA-44 or CSA-192 and linezolid were tested and synergistic interactions were seen with the CSA-192-linezolid combination against three Enterococcus spp., one of them VRE. The effects of CSA-44 and CSA-192 on the MIC values of vancomycin were also investigated, and the largest MIC change was seen in the vancomycin-CSA-192 combination. The in vivo effects of CSA-44 and CSA-192 were evaluated in a Caenorhabditis elegans model system. Compared to no treatment, increased survival was observed with C. elegans when treated with ceragenins. In conclusion, CSA-44 and CSA-192 appear to be good candidates (alone or in combination) for the treatment of enterococcal infections, including those from VRE.

2.
Curr Microbiol ; 80(10): 327, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620557

RESUMO

Ceragenins (CSAs) that mimic the activities of antimicrobial peptides may be new options for the treatment of infections caused by multidrug-resistant pathogens. This study investigated the antibacterial activities of eight different ceragenins against MDR pathogens and the synergistic effects of some ceragenins in combinations with antibiotics (meropenem-MEM, ceftazidime + avibactam-CZA, tigecycline-TIG). A disc diffusion method was used for antibiotic susceptibility tests, a broth microdilution, and checkerboard methods were used to detect minimum inhibitory concentrations (MICs) and the effects of combinations, respectively. While MIC90 values CSA-13, CSA-44, CSA-131 against Klebsiella pneumoniae isolates had similar effect with MEM (8 µg/ml); CSA-13, CSA-44, CSA-131, CSA-138, and CSA-144 had better activity than MEM against Acinetobacter baumannii and Pseudomonas aeruginosa isolates. In particular, CSA-44 and CSA-131 were effective against A. baumannii and P. aeruginosa isolates which resistant to both COL and MEM. CSA-44+MEM and CSA-131+CZA combinations showed synergistic activity against most (70%) of MDR- E. coli isolates. Although TIG is known to have weak activity in nonfermentative bacteria, CSA-44+TIG combination showed synergistic activity against two (17%) of the A. baumanni isolates. In addition, CSA-44+TIG and CSA-131+TIG combinations showed additive effects against all P. aeruginosa isolates. Antagonism was not detected in any of the combinations. CSA-44 and CSA-131 alone/or in combinations with MEM or CZA can be considered as new alternative treatments in serious infections caused by MDR pathogens.


Assuntos
Antibacterianos , Sepse , Humanos , Antibacterianos/farmacologia , Escherichia coli , Meropeném , Pseudomonas aeruginosa
3.
Curr Microbiol ; 80(1): 5, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434296

RESUMO

Lungs of cystic fibrosis patients are often colonized or infected with organisms, such as Pseudomonas aeruginosa and other emerging pathogenic bacteria such as Achromobacter xylosoxidans. Further, it is well established that infections of the cystic fibrosis lung airways are caused by polymicrobial infections, although its composition and diversity may change throughout the patient's life. In the present study, we investigated the effects of N-acetylcysteine (NAC) and amikacin, aztreonam, ciprofloxacin, and tobramycin alone and in combination against single- and dual-species biofilms of P. aeruginosa and A. xylosoxidans, in vitro and in the Caenorhabditis elegans infection model. Results showed that tobramycin and ciprofloxacin were the most effective antibiotics, while aztreonam was the least effective antibiotic against both single- and dual-species biofilms of P. aeruginosa and A. xylosoxidans. However, NAC showed little effect on both single- and dual-species, even with a combination of antibiotics. Increased survival was observed in C. elegans when treated with NAC in combination with tobramycin or ciprofloxacin, compared to no treatment or NAC alone. Tobramycin and ciprofloxacin were found effective in biofilms, but more research is needed to better understand the effects of NAC and antibiotics against single- and dual-species biofilms.


Assuntos
Achromobacter denitrificans , Fibrose Cística , Animais , Humanos , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Acetilcisteína/farmacologia , Aztreonam/farmacologia , Fibrose Cística/microbiologia , Caenorhabditis elegans , Biofilmes , Tobramicina/farmacologia , Ciprofloxacina/farmacologia
4.
Bioorg Chem ; 128: 106045, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35921788

RESUMO

The development of new antimicrobial agents is necessary to overcome the emerging antimicrobial resistance among infectious microbial pathogens. Herein, we successfully designed and synthesized quinolinequinones (QQs) with N-phenylpiperazine (QQ1-7) containing strong or weak EDG in the amino moiety by converting hydroxyquinoline (HQ) to the dichloroquinolinequinone (QQ) via chlorooxidation. We performed an extensive antimicrobial activity assessment of the QQs with N-phenylpiperazine (QQ1-7). Among the seven quinolinequinones (QQs) with N-phenylpiperazine tested, QQ3 and QQ4 were the most active molecules against Staphylococcus aureus (ATCC® 29213) with a MIC value of 1.22 µg/mL. In addition to this, while QQ4 was more than six (6) times more effective towards Enterococcus faecalis (ATCC® 29212), QQ3 was twenty-six (26) times more effective against same strain. Furthermore, the evaluation of antimicrobial activity indicated that six of seven synthesized QQs (QQ1-4, QQ6, and QQ7) exhibited superior biological potency, eight (8) times for five of them (QQ1-4 and QQ6) and two (2) times for QQ7, against Staphylococcus epidermidis (ATCC® 12228). Besides, all QQs except QQ5 displayed excellent antifungal activity against the fungi Candida albicans (ATCC® 10231). Among these, the two QQs (QQ3 and QQ4), which showed the lowest values against gram-positive bacterial strains (Staphylococcus aureus (ATCC® 29213), Staphylococcus epidermidis (ATCC® 12228), and Enterococcus faecalis (ATCC® 29212)) as well as fungal strains (Candida albicans (ATCC® 10231) and Candida parapsilosis (ATCC® 22019)), were further evaluated for their biofilm inhibition properties and their mode of action with in vitro potential antimicrobial activity against each of 20 clinically obtained resistant strains of gram-positive bacteria, and bactericidal activity using time-kill curve assay. In this study, we investigated the bactericidal effects of QQ3 against methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans strains. The findings of this study suggest that a significant bactericidal effect was seen with all tested 1 × MIC and 4 × MIC concentrations used within 24 h. Our findings present significant implications for an antimicrobial drug candidate for treating infections, especially those caused by clinically resistant MRSA isolates.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Candida albicans , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Oxiquinolina/farmacologia , Piperazinas , Staphylococcus aureus , Staphylococcus epidermidis
5.
J Fungi (Basel) ; 8(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35887439

RESUMO

N-chlorotaurine (NCT), the N-chloro derivative of the amino acid taurine, is a long-lived oxidant produced by stimulated human leucocytes. NCT has antimicrobial activities which are generally enhanced in the presence of organic material. The aim of this study was to investigate fungicidal effects of NCT and conventional antiseptics against Candida isolated from vulvovaginal candidiasis (VVC). Chlorhexidine (CHX, 1.6%), octenidine dihydrochloride (OCT, 0.08%), povidone iodine (PVP-I, 8%), boric acid (8%), and NCT (0.1% (5.5 mM)) were evaluated against forty-four Candida isolates, according to European Standard methods, at 30, 60, 90, and 120 min and 24 h in the presence of skim milk as an organic material. CHX, OCT, and PVP-I showed rapid fungicidal activity against all Candida isolates with 5-6 log10 reduction of viable counts after 30 min, whereas boric acid and NCT needed 1 h against Candida albicans and 2 h against non-albicans Candida for a significant 3 log10 reduction. NCT showed fungicidal activity (defined as ≥4 log10 reduction) against C. albicans within 90 min and C. non-albicans within 24 h. Based upon all presently available data, including our results, NCT could be used as a new agent for treatment of local fungal infections such as VVC.

6.
Molecules ; 27(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35566274

RESUMO

Two subseries of aminated quinolinequinones (AQQs, AQQ1-16) containing electron-withdrawing group (EWG) or electron-donating group (EDG) in aryl amine moiety were successfully synthesized. Antimicrobial activity assessment indicates that some of the AQQs (AQQ8-10 and AQQ12-14) with an EDG in aryl amine exhibited strong antibacterial activity against Gram-positive bacterial strains, including Staphylococcus aureus (ATCC® 29213) and Enterococcus faecalis (ATCC® 29212). In contrast, AQQ4 with an EWG in aryl amine displayed excellent antifungal activity against fungi Candida albicans (ATCC® 10231) with a MIC value of 1.22 µg/mL. To explore the mode of action, the selected AQQs (AQQ4 and AQQ9) were further evaluated in vitro to determine their antimicrobial activity against each of 20 clinically obtained resistant strains of Gram-positive bacteria by performing antibiofilm activity assay and time-kill curve assay. In addition, in silico studies were carried out to determine the possible mechanism of action observed in vitro. The data obtained from these experiments suggests that these molecules could be used to target pathogens in different modes of growth, such as planktonic and biofilm.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Aminas , Antibacterianos/farmacologia , Biofilmes , Candida albicans , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana
7.
PeerJ ; 8: e9419, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612893

RESUMO

During the contact lens (CL) usage, microbial adhesion and biofilm formation are crucial threats for eye health due to the development of mature biofilms on CL surfaces associated with serious eye infections such as keratitis. For CL related eye infections, multi drug resistant Pseudomonas aeruginosa or Staphylococcus aureus (especially MRSA) and Candida albicans are the most common infectious bacteria and yeast, respectively. In this study, CL biofilm models were created by comparing them to reveal the differences on specific conditions. Then the anti-biofilm activities of some commercially available multipurpose CL solutions (MPSs) and antibiotic eye drops against mature biofilms of S. aureus, P. aeruginosa, and C. albicans standard and clinical strains were determined by the time killing curve (TKC) method at 6, 24 and 48 h. According to the biofilm formation models, the optimal biofilms occurred in a mixture of bovine serum albumin (20% v/v) and lysozyme (2 g/L) diluted in PBS at 37 °C for 24 h, without shaking. When we compared the CL types under the same conditions, the strongest biofilms according to their cell density, were formed on Pure Vision ≥ Softens 38 > Acuve 2 âˆ¼ Softens Toric CLs. When we compared the used CLs with the new ones, a significant increase at the density of biofilms on the used CLs was observed. The most active MPS against P. aeruginosa and S. aureus biofilms at 24 h was Opti-Free followed by Bio-True and Renu according to the TKC analyses. In addition, the most active MPS against C. albicans was Renu followed by Opti-Free and Bio-True at 48 h. None of the MPSs showed 3 Log bactericidal/fungicidal activity, except for Opti-Free against S. aureus and P. aeruginosa biofilms during 6 h contact time. Moreover, all studied antibiotic eye drops were active against S. aureus and P. aeruginosa biofilms on CLs at 6 h and 24 h either directly or as 1/10 concentration, respectively. According to the results of the study, anti-biofilm activities of MPSs have changed depending on the chemical ingredients and contact times of MPSs, the type of infectious agent, and especially the CL type and usage time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...